
 

AUTOMATED SOIL PROFILE GENERATION METHODS ON THE BASIS OF DMT AND 

CPT DATA 

 

Michał Kruk, Jarosław Kurek, Piotr Bilski and Simon Rabarijoely 
 

Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences – SGGW, ul. 

Nowoursynowska 159, 02-767, Warsaw, Poland 

Michał Kruk michal_kruk@sggw.pl 

 
Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences – SGGW, ul. 

Nowoursynowska 159, 02-767, Warsaw, Poland  

Jarosław Kurek jaroslaw_kurek@sggw.pl 

 

Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences – SGGW, ul. 

Nowoursynowska 159, 02-767, Warsaw, Poland  

Piotr Bilski piotr_bilski@sggw.pl 
 

Faculty of Engineering and Environmental Sciences, Warsaw University of Life Sciences – SGGW, ul. 

Nowoursynowska 159, 02-767, Warsaw, Poland  

Simon Rabarijoely simon_rabarijoely@sggw.pl 

 

Abstract 

The paper presents automated methods of the soil profile generation on the basis of DMT and CPT 

data gathered from the Warsaw University of Life Sciences campus. Knowledge about the structure of 

the soil is important not only for the researchers, but also for engineers planning foundation of the new 

buildings. To properly design the building structure, the detailed information about the type and 

parameters of the soil must be determined. The traditional approach to this task was drilling boreholes 

in the ground to obtain soil samples. They could be then analyzed in the laboratory, so the information 

about the soil types in the test site was known with high precision. Unfortunately, the cost of drilling 

boreholes is high, therefore numerous attempts to obtain faster and cheaper methods are proposed. 

Application of geotechnical probes is more convenient, faster and cheaper than boreholes, therefore 

they supplement the boreholes during the in situ investigations. Based on the measured physical 

parameters and the diagram (called nomogram) connecting their values with the soil type, the profile 

can be generated by the human expert. Unfortunately, knowledge stored in nomograms is applicable 

only to specific geographical location. Using the diagram for soils with different geological history is 

prone to inaccuracies and identification errors. Therefore data analysis methods are implemented. 

The main task of this work is to find the automated method to determine the structure of the soil. This 

method must be equal or even better than human expert to be accepted. In the work we proposed two 

solutions of this task and compared them with the human experts and with the soil samples obtained 

from the boreholes. The first one is based on the gradient analysis. It is composed of the Gaussian, 

average and median filtering and gradient or Laplacian zero-crossing search. The main problem in this 

method is smoothing the data and removing outliers (measurements significantly different than the 

neighbouring ones) – if we use bad parameters to filtering, we obtain too little or too many soil layers. 

The second method is based on the cluster analysis. The main problem in such methods is to find 

automatically the number of clusters. To do this we compared existing methods with our solution 

which is based on the gradient analysis. 

The experiments had two aims. The first one was confrontation the soil profiles generated by the 

algorithms with the ones generated in the laboratory from the boreholes. In the optimal situation both 
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profiles should be identical. The second one was to confirm the accuracy of the profile by the 

geotechnical expert.  

Keywords: soil profiles, soil categorization, soft computing methods, clustering, dilatometer test. 

 

 

1. Introduction 

 
The modern geotechnical exploration methods are widely supported by the computer technologies. 

The hardware used in these methods (invasive probes such as CPT and DMT) is helpful to obtain and 

store measurement data. In this approach it is easier to use the computer algorithms in analyzing the 

obtained data. They increase speed of geotechnical parameters’ calculation. On the other hand, the 

widely used method is the analysis of gathered data using charts by the human expert (Marchetti 

1980). The traditional and the most reliable approach to this task is drilling boreholes in the ground to 

obtain soil samples. Then they can be then analyzed in the laboratory, so the information about the soil 

types in the test site may be known with high precision. Unfortunately, the cost of drilling boreholes is 

high and it is very intrusive method, therefore attempts to minimize its usage are made. 

The computer algorithm can analyze the collected measurement data automatically and as the output 

produces the soil profile. They can be analyzed by the geotechnical engineer, who verifies the 

accuracy of the generated profile or uses the information to calculate geotechnical,indexes. Such 

knowledge can be further used to develop the automated soil profile generation system, classifying the 

geotechnical layers based on the measured quantities at particular depths. Similar works were done 

before (Hashash et al. 2004, Shahin et al. 2005), but new approaches must be proposed. 

The paper presents an automatic approach for soil profile generation using selected clustering 

methods. The measurement data are obtained from Warsaw University of Life Sciences (WUoLS) 

campus, Warsaw, Poland. The data gathered for the computer algorithm (implemented in Matlab 

enviroment) are obtained using DMT and CPT probes. The research presented here is a continuation 

of the experiments published before (Rabarijoely et al. 2007) and Rabarijoely and Bilski 2009). The 

expected result of the research is the method for soil profile generation which accuracy can be similar 

or better to the human expert. In this paper we combine the differential methods with the clustering 

algorithms and compare them to the automated clustering methods.  

 

2. The input data 

 

The soil measurements were taken at Warsaw University of Life Sciences (WUoLS) during the 

expansion of the university. Before new buildings could be established, throughout soil investigation 

had to be performed. Therefore multiple tests were conducted, using the presented probes and 

traditional methods, i.e. boreholes. The latter as the most accurate was treated as the reference method. 

The data for the experiment were gathered from geotechnical investigations by CPT and DMT probes.  

The cone penetration test (CPT) is a standard and well established method widely used to recognize 

and analyze geotechnical conditions (Lunne et al. 1997, Młynarek 2007, Huang A & Mayne 2008). 

The probe is presented in Fig. 1. It is inserted into the ground with the constant speed of 2cm/s. During 

that process the measurement data of four parameters are obtained: depth (d), the resistance of the 

cone (qc), sleeve friction resistance (fs) and friction coefficient (Rf). We used the first three values in 

the presented experiment. 

 

 
Figure 1 : The cone penetration test probe 

 



The Flat Dilatometer Test (DMT), developed in Italy in 1980, is currently used in dozens countries 

both for research and practical applications. Wide diffusion of the DMT lies on the following reasons: 

 Simple equipment and operation.  

 High reproducibility.  

 Cost effectiveness.  

 Variety of penetration equipment (Totani et al. 2001) 

The dilatometer consists of a steel blade having a thin, expandable, circular steel membrane mounted 

on one face. When at rest, the membrane is flush with the surrounding flat surface of the blade. The 

latter is connected, by an electro-pneumatic tube running through the insertion rods, to a control unit 

on the surface (Fig. 2a). The control unit is equipped with pressure gauges, an audio-visual signal, a 

valve for regulating gas flow (provided by a tank) and vent valves. The blade (Fig. 2b) is advanced 

into the ground using common field equipment, i.e. push rigs normally used for the cone penetration 

test (CPT) or drill rigs. Pushing the blade with a 20 ton penetrometer truck is the most effective (up to 

100 m of profile per day). The test starts by inserting the dilatometer into the ground. Soon after the 

penetration, the operator inflates the membrane and takes, in about 1 min, two readings: the A 

pressure, required to just begin to, move the membrane ("lift-off"), and the B pressure, required to 

move the center of the membrane 1.1 mm against the soil. A third reading C ("closing pressure") can 

also optionally be taken by slowly deflating the membrane soon after B is reached. The blade is then 

advanced into the ground of one depth increment (typically 20 cm) (Totani et al. 2001 ). 

 

  
 

Figure 2 : The DMT control unit (a) and the probe (b) 

 

The tests were made in the areas where new buildings were to be established. As the final result the 

geotechnical cross-section charts were made by the human experts. The example of such a chart is 

presented in Fig.3. These charts are useful for the presented algorithm examination and the knowledge 

from it will be used to develop artificial intelligence classification system. To develop and test the 

algorithm, CPT and DMT data sets were used. They are called “CPT1”, “CPT2”, “DMT1”, “DMT2”, 

and so on. Each data set is a nm matrix, where n is a number of rows (number of depths at which the 

measurements are taken) and m is a number of columns. The first column contains information about 

the depths, while the other columns contain values of the measured parameters.  

The data gathered by CPT and DMT probes are presented in Fig.4. It is easy to observe a lot of 

extremes. In the most of them should be the change of the sort of soil. The smallest extremes should 

be removed because they contains noise – for example, they are generated when the probe hits the 



rock. One of the task of described experiment is to remove this noise and at the same time to save 

useful information. It was done by using low pass filters such as Gaussian filter. 

 
Figure 3. A typical geotechnical cross-section: OW – borehole, CPT – cone penetration test, DMT – 

Dilatometer test; (N – fill, Gp – sandy clay, Pd –fine sand, wn – moisture content, ID – relative density, 

IL –liquidity index) 

 

 
Figure 4. Results of the CPT and DMT measurements 

3. Applied methods 

 

 

The first step was improving the resolution of data set. Because of small data set (about 50 per one 

measurement) the resolution is insufficient. To make better resolution the cubic spline interpolation 

was performed on the all data sets. It is a piecewise continuous curve, passing through each of the 

values in the table. We start from a table of points       ] for i=0,1,…,n for the function y=f(x), which 

makes n+1 points and n intervals between them. There is a separate cubic polynomial for each 

interval, containing its own coefficients: 



 

              
          

               
 

Together, these polynomial segments are denoted S(x), the spline. Since there are n intervals and four 

coefficients for each we require a total of 4n parameters to define the spline S(x). We need to find 4n 

independent conditions to fix them. Two conditions for each interval are taken from the requirement 

that the cubic polynomial match the values of the table at both ends of the interval: 

 

                            

 
These conditions result in a piecewise continuous function.  

We still need 2n more conditions. Since we would like to make the interpolation as smooth as 

possible, we require that the first and second derivatives also be continuous: 

  

  
          

        
  
           

      
 

These conditions apply for i=1,2,…,n-1, resulting in 2(n-1) constraints. So we need two more 

conditions to completely fix the spline: 

 

   
           

          
 

With 4n coefficients and 4n linear conditions it is straightforward to work out the equations that 

determine them. The conditions can be reduced easily to a tridiagonal system with the coefficients ci 

as unknown variables. Once solved, the remaining coefficients are easily determined. Cubic splines 

are popular because they are easy to implement and produce a curve that appears to be seamless. As 

we have seen, a straight polynomial interpolation of evenly spaced data tends to build in distortions 

near the edges of the table. Cubic splines avoid this problem, but they are only piecewise continuous, 

meaning that a sufficiently high derivative (third) is discontinous. If the application is sensitive to the 

smoothness of derivatives higher than second, cubic splines may not be the best choice.  

The second step was the data set smoothing. It was necessary, because there is a lot of noise 

(represented by small extremes on the chart). The noise appeared when the probe hit the rock. In our 

experiment the best results were obtained using the Gaussian filter. It can be described by the 

following equation: 

     
 

    
 
 

  

    

 

The Gaussian function is non-zero for          and would theoretically require an infinite window 

length. However, since it decays rapidly, it is often reasonable to truncate the filter window and 

implement the filter directly for narrow windows, in effect by using a simple rectangular window 

function. In our algorithm we calculated the optimal windows size in experimental way. It should be 

equal to 150. The figure 5 presents the Gaussian window of this size. 



 

Figure 5. The Gaussian window 

 

The results of smoothing by Gaussian filter and cubic spline interpolation are presented in Fig. 6. To 

find the borders of soil profiles we checked the zero crossing of the first derivative: 

 

        
 

  

  



 

 
 Figure 6. Results of the CPT measurements a) result of cubic interpolation b) Gaussian filtering c) 

Gaussian filtering and its derivative (blue line ) d) first derivative and its zero crossing e) geotechnical 

cross-section 

 

It is easy to observe in Fig. 6 that the first border of two types of soils was avoided. It was caused by 

the measurement which was started at depth equals 1 meter. 

To compare described method we used a few clustering method with automatic estimation of the 

number of clusters. In these methods each cluster should represent the different soil category. To 

perform cluster analysis we used k-means algorithm and Silhouette, Calinski-Harabasz and Hartigan 

algorithms (M. Yan 2005) were used to obtain the number of clusters. Each cluster should represent 

one soil profile. The maximum and minimum value of the depth of the points in the cluster should 

describe the range of the soil profile. 

 
3.1 K-means clustering 

 
The well known k-means clustering is a typical example of partitioning techniques. It has become one 

of the most popular clustering methods because it is computationally easy to implement and is 

generally accessible in the statistical software and clustering packages. Various algorithms have been 

developed to search for the optimal partition of the k-means clustering, which are frequently referred 

to as k-means algorithms since it involves the calculation of the mean (centroid) of each cluster. We 

only introduce the k-means algorithm which we used. In (Forgy 1965) suggested a k-means algorithm 

consisting of the following steps (M. Yan 2005): 

 Start with   randomly-selected initial centers (seed points). Obtain the initial partition by 

assigning each object to its closest center. 

 Recompute the centroids with the current arrangement of objects. 

 Assign each object to the cluster with the nearest centroid. The centroids remain unchanged 

for an entire pass through the set of objects. 

 If no movement of an object has occurred during a pass, stop. Otherwise, repeat step 2 and 

step 3. 

 

3.2 Silhouette statistic 

 

Kaufman and Rousseeuw (Kaufman and Rousseeuw 1990) proposed the silhouette index as to 

estimate the optimum number of clusters in the data. The defnition of the silhouette index is based on 

the silhouettes introduced by (Rousseeuw), which are constructed to show graphically, how well each 

object is classified in a given clustering output. To plot the silhouette of the m-th cluster, for each 

object in Cm, calculate s(i) as: 

        
    

       



     
         

               
 

where     is the average dissimilarity of object i to all other objects in the m-th cluster and        = is 

the average dissimilarity of object i to all other objects in cluster          

 

The silhouette index, denoted by     , is defined as the average of the      for all objects in the data. 

     is called the average silhouette width for the entire data set, reflecting the within-cluster 

compactness and between-cluster separation of the clustering. Compute      for           The 

optimum value of g is chosen such that      is maximized over all g: 

 

               

3.3 Calinski and Harabasz's method 

 

This approach determines ^G by maximizing the index       over g, where       is given by 

 

      
          

          
 

 

and      and      are the between- and within-cluster sum of squared errors, calculated as the trace 

of matrix B and W, respectively.       is only defined for g greater than 1, since      is not defined 

when g = 1. Here   and   are defined as follows: 
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Where     is the cluster mean, g is the number of the clusters. 

 

3.4 Hartigan's method 

 
Hartigan (Hartigan 1975) proposed the following index 

 

        
    

      
            

 

Intuitively, the smaller the value of     , the higher similarity between objects which have the same 

cluster memberships. For the fixed values of g and     ,        will be sufficiently large if and 

only if          is sufficiently small. Thus, the idea is to start with     and to add a cluster if 

           is signifficantly large. The distribution of        can be approximated by the F-

distribution, which provides an approximated cut-off point. A simpler decision rule suggested by 

Hartigan is to add a cluster if            . Hence, the cluster number is best estimated as the 

smallest  ,          , such that        . 

 

4. Results of experiments 

 

The described methods were compared with the soil profiles generated in the laboratory from the 

boreholes. In the optimal situation both profiles should be identical. Table 1 presents the result of 

numerical experiments and compares it with boreholes. 

 

 

 



Table 1: Experimental results 

        nsp 

loc 

BHT Alg Silhouette CaH Hartigan 

CPT 1 6 5 3 8 8 

CPT 2 8 7 2 7 4 

CPT 3 6 6 5 10 8 

CPT 4 7 6 4 10 6 

CPT 5 7 7 2 9 5 

CPT 6 5 5 2 10 5 

DMT 1 6 6 2 10 8 

DMT 2 7 7 2 5 6 

DMT 3 7 7 2 8 7 

DMT 4 7 6 3 10 7 

 

In Table 1 nsp is the number of soil profiles, “BHT” is the bore hole test, “Alg” is our described 

algorithm based on interpolation and first derivative, “CaH” – Calinski and Harabsz’s method, “loc” – 

localization of the probe test. It is easy to observe that Silhouette and Calinski and Harabasz’s method 

are useless in this experiment. The best results were obtained by our algorithm. Only Hartigan gave 

similar (but still worse) results. Generally, dissimilarities between our algorithm and reference method 

(bore hole test) are caused by two factors – the first one is that probe test started always from one 

meter depth. All layers above were avoided. The second one is the resolution of the probe test. The 

measurements were saved each 0.2 m. In the case of thin layer it may be avoided or treated as noise. 

Interesting fact is that all differences are equal one which was caused by described two factors. 

  
 

Figure 7. Results of experiments. Red lines refers to borehole test (our reference metod), green line 

refers to our algorithm  
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The Figure 7 shows the graphical results of experiments. It is easy to observe that measurements 

started from 1 meter depth. The charts shows that our algoirthm is more accurate when the profiles are 

wider.  

 

5. Conclusions 
 
The proposed method appears to be useful for the automatic generation of the soil profiles. The ones 

obtained after applying the clustering algorithm to the data from two different probes are comparable.  

The proposed methodology is an attractive alternative for the geotechnical engineers, replacing the 

nomograms and supplementing boreholes. The open question is the selection of the correct number of 

categories to catch the most important ones and the versatility of the approach. It must be checked if 

the knowledge extracted from one site is usable in other, i.e. it can be used to classify soils in other 

locations as well. 
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